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The development of calculus was stimulated by two geometric problems: finding areas of plane
regions and finding tangent lines to curves. Both of those problems require a limit process for their general
solution. However, limit process occurs in many other applications as well. Besides the concept of limit is
the fundamental building block on which all other calculus concepts are based.

3.1 Definition of Limit

Limits described what happens to a function f (x) as its variable x approaches to a particular number a but
not on a.

Definition 3.1.1 Let f be a function defined in an open interval containing a, with the possible
exception of a it self. Then, the limit of the function at a is the number L, written as

lim
x→a

f (x) = L

� Example 3.1 Let f (x) = x+4, what happens to f (x) as x approaches to 1, but not equal to one.
Solution: To investigate the behavior of f (x) as x approaches 1 numerically and graphically we can
construct a table and draw a graph of f (x) for x near 1. The above table is as x approaches 1 from the
right The above table is as x approaches 1 from the left.
From the above table, we can conclude that f (x) approaches 5 as x approaches 1 from both the left and

right side of 1. �

x+ 1.5 1.3 1.1 1.01 1.01
f(x) 5.5 5.3 5.1 5.01 5.01
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2 Limit and Continuity

x− 0.5 0.7 0.9 0.99 0.999
f(x) 4.5 4.7 4.9 4.99 4.999

Figure 3.1: f (x) = x+4

� Example 3.2 Find lim
x→2

f (x) for a function f (x) = x2.

Solution: The following table illustrates the behavior of the function, as x becomes closer and closer
to 2 from both the left and right side of 2. The above table is as x approaches 2 from the right; that is,
lim

x→2+
f (x) The above table is as x approaches 2 from the left; that is, lim

x→2−
f (x).

Therefore, the value of f (x) = x2 are near 4 whenever x is close to 2 from both the left and right sides

Figure 3.2: f (x) = x2

since lim
x→2+

f (x) = lim
x→2−

f (x) = lim
x→2

f (x) = 4. �

Definition 3.1.2 Let f be a function defined in an open interval containing a, with the possible
exception of a it self. Then, the limit of the function at a is the number L, written as for all number
ε > 0, there exist a number δ > 0 such that

0 < |x−a|< δ ⇒ | f (x)−L|< ε

� Example 3.3 Evaluate lim
x→a

x.

Solution: Let ε > 0 be any number. Take δ = ε .
Now

|x−a|< δ ⇒ |x−a|< ε

⇒ | f (x)−a|< ε since f (x) = x

Hence, lim
x→a

x = a. �

x+ 2.5 2.3 2.1 2.01 2.001 2.0001
f(x) 6.25 5.29 4.41 4.0401 4.004001 4.00040001
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3.1 Definition of Limit 3

x− 1.5 1.7 1.9 1.99 1.999 1.9999
f(x) 2.25 2.89 3.61 3.9601 3.9960001 3.99960001

Figure 3.3: The limit of f on the open interval containing a

� Example 3.4 Show that lim
x→5

f (x) = 4 by using ε−δ definition, where f (x) = 2x−6.

Proof: Let ε > 0 be given. We must find δ > 0 such that

|x−5|< δ ⇒ | f (x)−4|< ε

Consider

| f (x)−4|< ε ⇔ |(2x−6)−4|< ε

⇔ |2x−10|< ε

⇔ |x−5|< ε

2

Now choose δ = ε

2 . Thus,

0 < |x−5|< δ ⇒ |x−5|< ε

2
⇒ 2|x−5|< ε

⇒ |2x−10|< ε

⇒ |(2x−6)−4|< ε

Therefore, |x−5|< δ ⇒ | f (x)−4|< ε . �

� Example 3.5 Given lim
x→−2

f (x) =−4, find δ > 0 for a number ε = 0.005 such that if 0 < |x−a|< δ ,

then | f (x)−L|< ε .
Solution: For every ε = 0.005 > 0 such that

0 < |x− (−2)|< δ ⇒ | f (x)− (−4)|< ε

So that,

0 < |x− (−2)|< δ ⇒ |(5x+6)+4|< 0.005
⇒ 5|(x+2)|< 0.005

⇒ |x+2|< 0.005
5

= 0.001

Thus, we can choose δ = 0.001 or any positive number less than 0.001. �

� Example 3.6 Show that lim
x→4

f (x) = 10 by using ε−δ definition, where f (x) = x2−6.

Proof: Let ε > 0 be given. We must find δ > 0 such that

|x−4|< δ ⇒ | f (x)−10|< ε
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4 Limit and Continuity

Consider

| f (x)−10|< ε ⇔ |(x2−6)−10|< ε

⇔ |x2−16|< ε

⇔ |(x+4)(x−4)|< ε

Let choose δ1 = 1. Thus,

0 < |x−4|< 1 ⇒ −1 < x−4 < 1
⇒ 3 < x < 5
⇒ 7 < x+4 < 9
⇒ |x+4|< 9
⇒ |x+4||x−4|< 9|x−4|

Let for some values of x we have 9|x−4|< ε ⇒ |x−4|< ε

9 . So choose δ2 =
ε

9 .
Now choose δ = min{δ1,δ2}= {1, ε

9}.

0 < |x−4|< δ =
ε

9
⇒ |x−4|< ε

9
⇒ 9|x−4|< ε

⇒ |x+4||x−4|< ε since |x−4|< 9
⇒ |(x+4)(x−4)|< ε

⇒ |x2−16|< ε

⇒ |(x2−6)−10|< ε

⇒ | f (x)−10|< ε

Therefore, |x−4|< δ ⇒ | f (x)−10|< ε . �

� Example 3.7 Show that lim
x→4

f (x) = 2
3 by using ε−δ definition, where f (x) = 4

x+2 .

Proof: Let ε > 0 be given. We must find δ > 0 such that

|x−4|< δ ⇒
∣∣∣∣ f (x)− 2

3

∣∣∣∣< ε

Consider ∣∣∣∣ f (x)− 2
3

∣∣∣∣< ε ⇔
∣∣∣∣12−2(x+2)

3(x+2)

∣∣∣∣< ε

⇔
∣∣∣∣ 8−2x
3(x+2)

∣∣∣∣< ε

⇔ 2
3

∣∣∣∣4− x
x+2

∣∣∣∣< ε

⇔ 2
3

∣∣∣∣x−4
x+2

∣∣∣∣< ε

Let choose δ1 = 1. Then,

|x−4|< δ1 = 1 ⇒ −1 < x−4 < 1
⇒ 3 < x < 5
⇒ 5 < x+2 < 7
⇒ 5 < |x+2|< 7

⇒ 1
7
<

1
|x+2|

<
1
5

⇒ 1
|x+2|

<
1
5

⇒ 2|x−4|
3

1
|x+2|

<
2|x−4|

15
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3.1 Definition of Limit 5

Let for some values of x we have 2|x−4|
15 < ε ⇒ |x−4|< 15

2 ε . So choose δ2 =
15
2 ε .

Now choose δ = min{δ1,δ2}= {1, 15
2 ε}.

0 < |x−4|< δ =
15
2

ε ⇒ |x−4|< 15
2

ε

⇒ 2
3
|x−4|

5
< ε

⇒ 2
3
|x−4|
|x+2|

< ε since
1

|x+2|
<

1
5

⇒ 2
3

∣∣∣∣4− x
x+2

∣∣∣∣< ε

⇒
∣∣∣∣ 8−2x)
3(x+2)

∣∣∣∣< ε

⇒
∣∣∣∣12−2(x+2)

3(x+2)

∣∣∣∣< ε

⇒
∣∣∣∣ f (x)− 2

3

∣∣∣∣< ε

Therefore, |x−4|< δ ⇒
∣∣ f (x)− 2

3

∣∣< ε . �

� Example 3.8 Show that lim
x→1

f (x) = 5 by using ε−δ definition, where f (x) = 4+
√

x.

Proof: Let ε > 0 be given. We must find δ > 0 such that

|x−1|< δ ⇒ | f (x)−5|< ε

Consider

| f (x)−5|< ε ⇔ |4+
√

x−5|< ε

⇔ |
√

x−1|< ε

⇔ | x−1√
x+1

|< ε

⇔ |x−1|
|
√

x+1|
< ε

Let choose δ1 = 1. Then,

|x−1|< δ1 = 1 ⇒ −1 < x−1 < 1
⇒ 0 < x < 2
⇒ 0 <

√
x <
√

2
⇒ 1 <

√
x+1 <

√
2+1

⇒ 1√
2+1

<
1√

x+1
<

1
1

⇒ |x−1|√
2+1

<
|x−1|
|
√

x+1|
<
|x−1|

1
= |x−1|

Let for some values of x we have |x−1|< ε . So choose δ2 = ε .
Now choose δ = min{δ1,δ2}= {1,ε}.

0 < |x−1|< δ ⇒ |x−1|< ε

⇒ |x−1|
|
√

x+1|
< ε since

|x−1|
|
√

x+1|
<
|x−1|

1
= |x−1|

⇒ | x−1√
x+1

|< ε

⇒ |
√

x−1|< ε

⇒ |4+
√

x−5|< ε

⇒ | f (x)−5|< ε
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6 Limit and Continuity

Therefore, |x−4|< δ ⇒ | f (x)− 2
3 |< ε . �

3.2 Basic Limit Theorems

If lim
x→a

f (x) = L and lim
x→a

g(x) = M, then

1. Limit of a constant function; that is, f (x) = c for all x for any constant c

lim
x→a

c = c

This means the graph of the constant function f is a horizontal line. That is no matter what the
value of x, f (x) is always c. Thus as we approach x = c from either the left or the right, we hit the
line y = c at height of c.

� Example 3.9 lim
x→2

5 = 5 �

2. Limit of identity function; that is, f (x) = x for all x

lim
x→a

x = a

The graph of the function is a straight line. As we approach the point x = a from the left and the
right, the function approaches the value a.

� Example 3.10 lim
x→4

x = 4 �

3. Constant Multiple Rule

lim
x→a

c f (x) = c lim
x→a

f (x)

= cL for any constant c

� Example 3.11 lim
x→2

3x = 3 lim
x→2

x = 3(2) = 6 �

4. Sum–Difference Rule

lim
x→a

( f (x)±g(x)) = lim
x→a

f (x)± lim
x→a

g(x)

= L±M

� Example 3.12 lim
x→2

(x+6) = lim
x→2

x+ lim
x→2

6 = 3(2)+6 = 12 �

5. Product Rule

lim
x→a

( f (x) ·g(x)) = lim
x→a

f (x) · lim
x→a

g(x)

= L ·M

� Example 3.13

lim
x→2

x2 = lim
x→2

x · x

= lim
x→2

x · lim
x→2

x

= 2 ·2 = 4

�

� Example 3.14

lim
x→2

(x+1)(x2−2) = lim
x→2

(x+1) · lim
x→2

(x2−2)

= 3 ·2 = 6

�
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3.2 Basic Limit Theorems 7

6. Quotient Rule

lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)

=
L
M

provided that M 6= 0

7. Power Rule
lim
x→a

( f (x))n = (lim
x→a

f (x))n = Ln, n is any real number

� Example 3.15 lim
x→2

(3x+2)2 = (lim
x→2

3x+2)2 = 82 = 64 �

Although the above basic limit theorems are stated for only two functions f and g, the result will still be
true for a finite number of functions.

� Example 3.16 Find the lim
x→1

(5x2 +3x+1).

Solution:

lim
x→1

(5x2 +3x+1) = lim
x→1

5x2 + lim
x→1

3x+ lim
x→1

1

= 5(lim
x→1

x)2 +3 lim
x→1

x+ lim
x→1

1

= 5(1)2 +3(1)+1
= 9

�

� Example 3.17 Find the lim
x→2

9x5+10
7x2+2x+1 .

Solution:

lim
x→1

9x2 +10
7x2 +2x+1

=
lim
x→2

9x5 +10

lim
x→2

7x2 +2x+1

=
9(lim

x→2
x)5 + lim

x→2
10

7(lim
x→2

x)2 +2 lim
x→2

x+ lim
x→2

1

=
9(2)5 +10

7(2)2 +2(2)+1

=
298
33

�

From the above examples, we can have the following formulas to evaluate limits of a polynomial and
rational functions.
If f (x) and g(x) are polynomials, then

lim
x→a

f (x) = f (a) and lim
x→a

f (x)
g(x)

=
f (a)
g(a)

,g(a) 6= 0

In both cases you simply substitute the value of a in to the equation.

� Example 3.18 Find the lim
x→1

x+3
x−1 .

Solution: Since lim
x→1

(x−1) = 0, the quotient rule for limits does not apply here. When the denominator of

the given rational function approaches zero, while the numerator does not, we can conclude that the limit
does not exist.
When both the numerator and the denominator of the given rational function approaches zero, simplify
the function algebraically in order to find the desired limits. The limits of f (x) as x approaches a, depends
on the values of f (x) as x becomes close to a, but we exclude x = a. �
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8 Limit and Continuity

� Example 3.19 Evaluate lim
x→2

x2−x−2
x−2 .

Solution: When substitute 2 in to the function, then both the numerator and denominator becomes zero,
hence f (2) is meaningless. Therefore, straight substitution does not yield the limit of the function f at
x = 2. Simplifying the function, we get

f (x) =
x2− x−2

x−2
=

(x−2)(x+1)
(x−2)

= (x+1)

Thus,

lim
x→2

x2− x−2
x−2

= lim
x→2

(x+1) = 3

�

Remark 3.2.1 Even after expressing f in the form of x+1, we do not think what x+1 is when x = 2
but rather that of what x+1 approaches as x tends to 2.

� Example 3.20 Evaluate lim
x→−2

x2

|x|+3 .

Solution: Observe that x2

|x|+3 is the quotient of x2 and |x|+3, whose limits at −2. We know that

lim
x→−2

x2 = 4 and lim
x→−2

(|x|+3) = 5

We conclude from the quotient rule that

lim
x→−2

x2

|x|+3
=

lim
x→−2

x2

lim
x→−2

(|x|+3)

=
4
5

�

� Example 3.21 Show that lim
x→0

1
x does not exist.

Solution: Suppose that lim
x→0

1
x exists, and let L = lim

x→0
1
x . Since 1 = x( 1

x ), by using product rule

1 = lim
x→0

1

= lim
x→0

(x
1
x
)

= lim
x→0

x · lim
x→0

1
x

= 0 ·L
= 0

Which is obvious false. Therefore, lim
x→0

1
x does not exist. �

� Example 3.22 Find lim
x→−2

x3+2x2−x−2
x2−4 .

Solution: Since lim
x→−2

(x2− 4), we can not apply the quotient rule to this function in its original form.

However, since x3 +2x2− x−2 = (x+2)(x2−1) and x2−4 = (x+2)(x−2), we have

lim
x→−2

x3 +2x2− x−2
x2−4

=
lim

x→−2
(x+2)(x2−1)

(x+2)(x−2)

= lim
x→−2

x2−1
x−2

=
(−2)2−1
−2−2

= −3
4
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3.2 Basic Limit Theorems 9

�

� Example 3.23 Evaluate lim
x→9

x(
√

x−3)
x−9 .

Since lim
x→9

(x−9) = 0, the quotient rule can not be applied directly. However, if we factor the denominator,

then we can cancel terms and the quotient rule

lim
x→9

x(
√

x−3)
x−9

= lim
x→9

x(
√

x−3)
(
√

x−3)(
√

x+3)

= lim
x→9

√
x√

x+3

=
9√

9+3

=
3
2

�

Theorem 3.2.2 Squeezing Principle
Suppose that f (x)≤ h(x)≤ g(x) for all x 6= a in some neighborhood. Suppose also that

lim
x→a

f (x) = k = lim
x→a

g(x)

Then, we also have lim
x→a

h(x) = k.

Theorem 3.2.3 Important Limit Theorems

lim
x→0

sinx
x

= 1 lim
x→0

1− cosx
x

= 0

lim
x→0

1− cosx
x2 =

1
2

lim
x→0

tanx
x

= 1

lim
x→∞

(1+
1
x
)x = e lim

x→0+
(1+ x)

1
x = e

lim
x→0

ex−1
x

= 1 lim
x→1

x−1
lnx

= 1

� Example 3.24 Show that lim
x→0

sinx
x = 1

Solution: Construct a circle with center at O and radius OA = OD = 1, as in figure below. Choose point B
on A extended and point C on OD so that lines BD and AC are perpendicular to OD. It is geometrically

Figure 3.4: Circle with center O

evident that
Area of4OAC < Area of a sector OAD < Area of4OBD (3.1)

Any one can get this soft-copy from Google site Exodus4Wisdom c©Natnael Nigussie
natnaelnigussie@gmail.com

natnael.nigussie@aastu.edu.et



10 Limit and Continuity

From this

1
2

sinxcosx <
1
2

x <
1
2

tanx (3.2)

Divide equation (3.2) both sides by 1
2 sinx, then we have

cosx <
x

sinx
<

1
cosx

⇒ cosx <
sinx

x
<

1
cosx

As x→ 0, cosx→ 1 and 1
cosx → 1, by squeezing theorem it follows that

lim
x→0

sinx
x

= 1

�

Remark 3.2.4 • lim
x→0

sinkx
x = k and lim

x→0
tankx

x = k for any constant k.

• lim
x→0

sinn x
x = 1 for any positive integer n.

� Example 3.25 Show that

lim
x→0

cosx−1
x

= 0

Solution: Notice that lim
x→0

x = 0, so we can not apply the quotient rule directly. However

lim
x→0

cosx−1
x

= lim
x→0

(
cosx−1

x
) · (cosx+1

cosx+1
)

= lim
x→0

cos2 x−1
x(cosx+1)

= lim
x→0

−sin2 x
x(cosx+1)

= lim
x→0

(
sinx

x
)(
−sinx

cosx+1
)

Since lim
x→0

sinx
x = 1. Furthermore, lim

x→0
−sinx

cosx+1 = 0
1+1 = 0.

By the sum and the quotient rules. Thus the product rule tells us that

lim
x→0

cosx−1
x

= lim
x→0

(
sinx

x
)(
−sinx

cosx+1
= 1 ·0
= 0

�

� Example 3.26 Evaluate lim
x→1

√
x−x2

1−
√

x .
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3.2 Basic Limit Theorems 11

Solution:

lim
x→1

√
x− x2

1−
√

x
= lim

x→1

√
x− x2

1−
√

x

(
1+
√

x
1+
√

x

)
= lim

x→1

√
x+ x− x2x2√x

1− x

= lim
x→1

√
x− x2√x+ x− x2

1− x

= lim
x→1

√
x(1− x2)+ x(1− x)

1− x

= lim
x→1

√
x(1− x)(1+ x)+ x(1− x)

1− x

= lim
x→1

(1− x)(
√

x(1+ x)+ x)
1− x

= lim
x→1

(
√

x(1+ x)+ x)

= 3

�

� Example 3.27 Is there a number a such that

lim
x→−2

3x2 +ax+a+3
x2 + x−2

exist? If so find the value of a and the value of the limit.
Solution: Since the limit of lim

x→−2
3x2+ax+a+3

x2+x−2 exist, the numerator must be the factor of (x+2); that is,

lim
x→−2

3x2 +ax+a+3
x2 + x−2

= lim
x→−2

3x2 +ax+a+3
(x−1)(x+2)

Thus

3x2 +ax+a+3 = (bx+ c)(x+2)
⇒ 3x2 +ax+a+3 = bx2 +(2b+ c)x+2c

⇒ b = 3,2b+ c = a and a+3 = 2c

⇒ a = 15,b = 3 and c = 9

So,

lim
x→−2

3x2 +ax+a+3
x2 + x−2

= lim
x→−2

(3x+9)(x+2)
(x−1)(x−2)

= lim
x→−2

3x+9
x−1

= −1

�

� Example 3.28 Show that lim
x→0

x3 sin 1
x = 0.

Solution: First notice that we can not use

lim
x→0

x3 sin
1
x
= lim

x→0
x3 lim

x→0
sin

1
x

because lim
x→0

sin 1
x does not exist.

However, since

−1≤ sin
1
x
≤ 1
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12 Limit and Continuity

We have, −x3 ≤ x3 sin 1
x ≤ x3. We know that

lim
x→0

x3 = 0 and lim
x→0

(−x)3 = 0

Taking f (x) =−x3, g(x) = x3 sin 1
x , and h(x) = x3 in the squeezing theorem, we obtain

lim
x→0

x3 sin
1
x
= 0

�

3.3 One sided Limit
Definition 3.3.1 1. Let f be a function which is defined at every number in some open interval

(a,c). Then the limit of f (x), as x approaches a from the right, is L, written

lim
x→a+

f (x) = L

if for any ε > 0, however small, there exist a δ such that, | f (x(−L|< ε whenever 0 < x−a < δ .
2. Let f be a function which is defined at every number in some open interval (d,a). Then the

limit of f (x), as x approaches a from the left, is L, written

lim
x→a−

f (x) = L

if for any ε > 0, however small, there exist a δ such that, | f (x(−L|< ε whenever−δ < x−a< 0.
3. The limit of a function exists at x = a if and only if

lim
x→a−

f (x) = L = lim
x→a+

f (x)

� Example 3.29 Find the limit of f (x) as x approaches 2 from the left and the right, where f (x) = x−3
and determine whether the limit of the function exist at x = 2 or not.
Solution: First we have to evaluate one sided limits from both sides of x = 2

lim
x→2−

f (x) = −1

lim
x→2+

f (x) = −1

Therefore, lim
x→2

f (x) =−1. �

� Example 3.30 Find lim
x→1

f (x), where f (x) =
{

x+1, x < 1
3− x, x > 1

Solution: Evaluate the limit as x approaches 1. From the graph we can see that

lim
x→1−

f (x) = 2

lim
x→1+

f (x) = 2

Therefore, lim
x→1

f (x) = 2. �

� Example 3.31 Find lim
x→1

f (x), where f (x) = |x|
x .

Solution: Notice that |x|=
{

x, x≥ 0
−x, x < 0 and |x|x =

{
1, x > 0
−1, x < 0

Then the left side limit can be found as

lim
x→0−

f (x) = lim
x→0−

−x
x

= lim
x→0−

−1 =−1
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3.4 Infinite Limit, Limit at infinity and Asymptotes 13

Figure 3.5: f (x) = x+1 if x < 1 and f (x) = 3− x if x > 1

and the right side limit can be found as

lim
x→0+

f (x) = lim
x→0+

x
x
= lim

x→0+
1 = 1

Therefore, lim
x→0

f (x) does not exist since the left side and right side limits are not the same; that is,

lim
x→0−

f (x) 6= lim
x→0+

f (x). Graphically, it is shown in the figure below. The value of |x|x approach different

Figure 3.6: f (x) = |x|
x

numbers as x approaches 0 from different sides, so lim
x→0

|x|
x does not exist. �

3.4 Infinite Limit, Limit at infinity and Asymptotes

3.4.1 Infinite Limit and Vertical Asymptote
Definition 3.4.1 Let f be a function defined in an interval containing a, with the possible exception of
a it self. Then,

1. lim
x→a+

f (x) = ∞, if for every number M > 0 there is some δ > 0 such that 0 < x−a < δ , then

f (x)> M.
2. lim

x→a+
f (x) =−∞, if for every number M < 0 there is some δ > 0 such that 0 < x−a < δ , then

f (x)< M.
3. lim

x→a−
f (x) = ∞, if for every number M > 0 there is some δ > 0 such that −δ < x−a < 0, then

f (x)> M.
4. lim

x→a−
f (x) =−∞, if for every number M < 0 there is some δ > 0 such that−δ < x−a < 0, then

f (x)< M.

� Example 3.32 Let f (x) = 1
x , show that lim

x→0+
f (x) = ∞ and lim

x→0+
f (x) = ∞.
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14 Limit and Continuity

Solution: For every M > 0, we can find δ > 0 such that

0 < x−0 < δ ⇔ f (x)> M

0 < x < δ ⇔ 1
x
> M

⇔ x <
1
M

Now choose δ = 1
M . Thus

0 < x−0 < δ ⇔ 1
x
>

1
δ
= M

⇔ f (x)> M

Therefore, lim
x→0+

f (x) = ∞ and for every M < 0, we can find δ > 0 such that

−δ < x−0 < 0 ⇔ f (x)< M

−δ < x < 0 ⇔ 1
x
< M

⇔ x >
1
M

Now choose δ =− 1
M . Thus

−δ < x−0 < 0 ⇔ 1
x
<− 1

δ
= M

⇔ f (x)< M

Therefore, lim
x→0−

f (x) = ∞. �

� Example 3.33 Show that lim
x→ 1

2
−

f (x) =−∞, where f (x) = 5x+1
2x−1 .

Solution: For every M < 0, there is a number δ > 0 such that

−δ < x− 1
2
< 0⇒ 5x+1

2x−1
< M

Consider

5x+1
2x−1

< M ⇔ 2x−1
5x+1

>
1
M

⇔
2(x− 1

2 )

5x+1
>

1
M
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3.4 Infinite Limit, Limit at infinity and Asymptotes 15

Let choose δ1 ≤ 1
5 , then

−1
5
<−δ < x− 1

2
< 0 ⇔ −1

5
< x− 1

2
< 0

⇔ −1
5
< x− 1

2
< 0

⇔ 3
10

< x <
1
2

⇔ 15
10

< 5x <
5
2

⇔ 25
10

< 5x+1 <
7
2

⇔ 2
7
<

1
5x+1

<
10
25

⇔ 4
7
<

2
5x+1

<
20
25

⇔ 20
25

(x− 1
2
)<

2
5x+1

(x− 1
2
)<

4
7
(x− 1

2
)

since x− 1
2
< 0

Thus,

2(x− 1
2 )

5x+1
>

1
M
⇔ 1

M
<

2(x− 1
2 )

5x+1
<

4
7
(x− 1

2
)

1
5x+1

⇔ 1
M

<
4
7
(x− 1

2
)

1
5x+1

⇔ 1
M

<
4
7

x− 1
2

5x+1

⇔ 7
4M

< x− 1
2

Choose δ2 =− 7
4M . Now choose δ = min{δ1,δ2}= { 1

5 ,−
7

4M}. Thus,

−δ < x− 1
2
< 0 ⇒ 7

4M
< x− 1

2
< 0

⇒ 7
4M

< x− 1
2

⇒ 7
2M

< 2x−1

⇒ 7
2

1
2x−1

< M

⇒ (5x+1)
1

2x−1
<

7
2

1
2x−1

< M

⇒ 5x+1
2x−1

< M

⇒ f (x)< M

Therefore, lim
x→ 1

2
−

f (x) =−∞. �

Definition 3.4.2 The line x = a is called a vertical asymptote of the graph of y = f (x) if any one of
the following limits holds true
• lim

x→a−
f (x) =±∞
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16 Limit and Continuity

• lim
x→a+

f (x) =±∞

• lim
x→a

f (x) =±∞

� Example 3.34 The line x = 0 is a vertical asymptote of the graph f (x) = 1
x since lim

x→0−
1
x = −∞ and

lim
x→0+

1
x = ∞. �

Figure 3.7: y = 1
x

Definition 3.4.3 The point x = x0 is a hole to the graph of a rational function f if and only lim
x→x0

f (x)

exist and f (x0) does not defined.

� Example 3.35 Determine the vertical asymptote or a hole to the graph of f (x) = x2−1
x2−x , if it exists.

Solution: The zeros of x2− x = 0 are x = 0 or x = 1. So, f is not defined at x = 0 and x = 1. Now, find
the limit of f (x) at x = 0 and x = 1.

lim
x→1

x2−1
x2− x

= lim
x→1

x+1
x

= 2

Thus, f (x) has a hole at x = 1 and

lim
x→0

x2−1
x2− x

=±∞

Thus, f (x) has a vertical asymptote at x = 0. �

3.4.2 Limit at Infinity and Horizontal Asymptotes
Definition 3.4.4 1. Let f be a function defined in an interval (a,∞), then lim

x→∞
f (x) = L if and only

if for all ε > 0, there exist M > 0 such that if x > M, then | f (x)−L|< ε .
2. Let f be a function defined in an interval (−∞,a), then lim

x→−∞
f (x) = L if and only if for all

ε > 0, there exist N < 0 such that if x < N, then | f (x)−L|< ε .

Definition 3.4.5 The line y = L is called a horizontal asymptote of the graph of y = f (x) if either
lim
x→∞

f (x) = L or lim
x→−∞

f (x) = L.

� Example 3.36 Consider the behavior of the function f (x) = 1
x ,x 6= 0 when x tends to infinity.

Solution: As x gets larger and larger and continuous to grow without bound, the corresponding values of
f get closer and closer to 0 and eventually tend to 0. The values of f (x) becomes closer and closer to zero
as x approaches to infinity

lim
x→∞

f (x) = 0

Any one can get this soft-copy from Google site Exodus4Wisdom c©Natnael Nigussie
natnaelnigussie@gmail.com

natnael.nigussie@aastu.edu.et



3.4 Infinite Limit, Limit at infinity and Asymptotes 17

This is read as ’the limit of f is zero as x tends to positive infinitive’.
Similarly the limit of f is zero as x tends to negative infinitive.

lim
x→−∞

f (x) = 0

Since lim
x→∞

1
x = 0 and lim

x→−∞

1
x = 0, the line y = 0 is the horizontal asymptote of f (x) = 1

x . �

Figure 3.8: y = 1
x

� Example 3.37 Evaluate lim
x→∞

3x−1
x+2 .

Solution: Let us divide both the numerator and denominator by x

3x−1
x+2

=
3− 1

x

1+ 2
x

,x 6= 0,x 6=−2

Since we are concerned with the behavior of 3x−1
x+2 for sufficiently large values of x. Thus we have

lim
x→∞

3x−1
x+2

= lim
x→∞

3− 1
x

1+ 2
x

=
3− lim

x→∞

1
x

1+ lim
x→∞

2
x

Therefore, lim
x→∞

3x−1
x+2 = 3. �

� Example 3.38 Find the vertical and horizontal asymptotes of the graph of f (x) = 1
x−3 .

Solution:
• To find Vertical Asymptotes

Notice that if

lim
x→a−

f (x) = ±∞

lim
x→a+

f (x) = ±∞ or

lim
x→a

f (x) = ±∞

Then the line x = a is a vertical asymptote of f (x).
Now, find lim

x→3−
1

x−3 =−∞ and also lim
x→3+

1
x−3 = ∞. Thus, the line x = 3 is the vertical asymptote.

• To find Horizontal Asymptotes
If either lim

x→∞
f (x) = L or lim

x→−∞
f (x) = L, then the line y = L is called a horizontal asymptote of the

graph of y = f (x).
Now, find lim

x→±∞

1
x−3 = 0 is horizontal asymptote.
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18 Limit and Continuity

�

Theorem 3.4.1 The limit of a function (if exists) is unique.

3.5 Continuity of a Function
Definition 3.5.1 A function f is said to be continuous at a if lim

x→a
f (x) = f (a)

Definition 3.5.2 If f is continuous at a, then
1. f (a) is defined
2. lim

x→a
f (x) exist

3. lim
x→a

f (x) = f (a).
If f is not continuous at a, then we say that f is discontinuous at a.

Figure 3.9: Continuity of f (x) as x approaches a

If a is in the domain of the rational function f , then lim
x→a

f (x) = f (a). Thus any rational function is
continuous at every point in its domain.

� Example 3.39 Show that the polynomial function f (x) = 3x2− x+5 is continuous at x = 1.
Solution: First we have to check whether the above three condition of continuity are satisfied or not

1. f (1) is defined
2. lim

x→1
f (x) exist

3. lim
x→1

f (x) = f (1)

Therefore, the function f (x) = 3x2− x+5 is continuous at x = 1. �

� Example 3.40 Show that f (x) = x2−1
x−1 is not continuous at x = 1.

Solution:
1. f (1) is not defined
2. lim

x→1
f (x) exist

Even if the limit of the function exists, since it is not defined at x = 1, the function f (x) is discontinuous
at x = 1. �

� Example 3.41 Find the points of discontinuity of f (x) = x2−x−6
x−2 .

Solution: The three condition for continuity are satisfied for any values of x∈ R except at x = 2. Therefore,
x = 2 is the only discontinuity point for f (x) = x2−x−6

x−2 . �

3.5.1 One Sided Continuity
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3.5 Continuity of a Function 19

Definition 3.5.3 1. f is said to be continuous from the right at a if lim
x→a+

f (x) = f (a).

2. f is said to be continuous from the left at a if lim
x→a−

f (x) = f (a).

Figure 3.10: Continuity of f as x approaches to a from the right

Figure 3.11: Continuity of f as x approaches to a from the left

� Example 3.42 Show that f is continuous from the right at 0, but not continuous from the left at 0,
where f (x) defined by

f (x) =
{
−1 if x < 0
1 if x≥ 0

Solution: Since lim
x→0+

f (x) = lim
x→0+

1 = 1 and f (0) = 1, it follows that lim
x→0+

f (x) = f (0)

Hence f is continuous from the right at zero. On the other hand, lim
x→0−

f (x) = lim
x→0−

−1 =−1 and f (0) = 1.

since lim
x→0−

f (x) 6= f (0), f is not continuous from the left at zero. �

Figure 3.12:

� Example 3.43 Show that the function defined by

f (x) =
{

0 if x < 0
1 if x≥ 0
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20 Limit and Continuity

is continuous from the right at 0 but not continuous from the left at 0.
Solution: lim

x→0+
f (x) = 1 = f (0) because of this f is continuous from the right at 0, f is not continuous

from the left at 0 since lim
x→0−

f (x) = 0 6= f (0). �

Definition 3.5.4 A function f is said to be
1. Continuous on (a,b) if f is continuous at each point in the open interval (a,b).
2. Continuous function if f is continuous over its domain.
3. Continuous in the closed interval [a,b] if f is continuous at each point in the open interval (a,b)

and x = a from the right and at x = b from the left.

� Example 3.44 Show that the function f (x) = x+5
x−2 is continuous on the open interval (−3,2).

Solution: The three conditions for continuity are satisfied for for any value of x between -3 and 2.
Therefore, the function is continuous in the open interval (−3,2). However, the function is not continuous
for the closed interval [−3,2], since f (x) is discontinuous at x = 2. �

� Example 3.45 Show that f (x) =
√

x is continuous on [0,2].
Solution: lim

x→a

√
x =
√

a for every a > 0, it follows that f is continuous at a. Hence f is continuous on

(0,2).
Moreover, lim

x→2−

√
x =
√

2 and f (2) =
√

2.

Thus f is continuous from the left at 2.
Similarly,

lim
x→0+

√
x = 0 = f (0)

and so f is continuous from the right at 0. Hence f is continuous on [0,2]. �

� Example 3.46 Let f (x) = x2−3x+2
x2+5x+6 . Determine the numbers at which f is continuous.

Solution: Observe that f is a rational function. The denominator is 0 for x = 1 and x =−6, so f is defined
for all x except 1 and -6. Therefore f is continuous at every number except 1 and -6. �

Theorem 3.5.1 A function is continuous at a if and only if it is both continuous from the right and
continuous from the left at a.

� Example 3.47 Determine the value of a constant a such that the function

f (x) =
{

ax2 +2 if x≥ 3
2ax+11 if x < 3

is continuous at x = 3.
Solution: If f (x) is to be continuous at x = 3, then lim

x→3
f (x) must exist and furthermore

lim
x→3

f (x) = f (3)

lim
x→3+

f (x) = lim
x→3+

(ax2 +2) = 9a+2 and

lim
x→3−

f (x) = lim
x→3+

(2ax+11) = 6a+11

Now equate the left and right side limits. This means

lim
x→3+

f (x) = lim
x→3−

f (x) = lim
x→3

f (x) = f (3)

From this it follows that 9a+2 = 6a+11. Solving for a we get a = 3. Therefore the value of a must be 3
if f (x) is to be continuous at x = 3. �
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3.5 Continuity of a Function 21

Theorem 3.5.2 If f and g are continuous at a and c is a constant, then f ±g, c f , f ·g and f
g , if g(a) 6= 0

are also continuous at a.

Theorem 3.5.3 If f (x) is continuous at x = a, then | f (x)| is also continuous at x = a.

� Example 3.48 f (x) = x is continuous at x = 1, then |x| is also continuous at x = 1. �

Figure 3.13: f (x) = |x|

Theorem 3.5.4 Polynomial functions, Rational functions, Root functions, Trigonometric functions,
Inverse functions, Exponential functions and Logarithmic functions are continuous on their domain.

Theorem 3.5.5 If lim
x→a

g(x) = b and f is continuous at b, then lim
x→a

f (g(x)) = f (b); that is,

lim
x→a

f (g(x)) = f (lim
x→a

g(x))

Theorem 3.5.6 If g is continuous at a and f is continuous at g(a), then f og is continuous at a; that is,

lim
x→a

f (g(x)) = f (g(a))

� Example 3.49 Show that h is continuous at 2, where h(x) =
√

x−1.
Solution: Let g(x) = x−1 and f (y) =

√
y. Then h = f og. We know that g is continuous at x = 2 and that

f is continuous at g(2) = 1. Since the square root function is continuous at every positive number. It
follows from the above theorem that it is continuous at 2. �

3.5.2 Intermediate Value Theorem

Theorem 3.5.7 Suppose f is continuous on a closed interval [a,b]. Let K be any number between f (a)
and f (b), so that f (a)≤ k ≤ f (b) or f (b)≤ k ≤ f (a). Then there exist a number c in [a,b] such that
f (c) = K.

Notice that f be continuous on an interval I. If f has both positive and negative values on I, then the
intermediate value theorem implies that f (x) = 0 for some x in I; that is, f has zero in I. Equivalently, if
f has no zero in I, then either f (x)> 0 for all x in I or f (x)< 0 for all x in I.

Theorem 3.5.8 Let f be continuous on [a,b] and f (a) < 0 < f (b) or f (b) < 0 < f (a), then the
function have at least one solution.

� Example 3.50 Show that the equation x5−2x4−2x3 +8x2−3x−3 has solution between 0 and 2.
Solution: Let

f (x) = x5−2x4−2x3 +8x2−3x−3

Any one can get this soft-copy from Google site Exodus4Wisdom c©Natnael Nigussie
natnaelnigussie@gmail.com

natnael.nigussie@aastu.edu.et



22 Limit and Continuity

since f is a polynomial function, then f is continuous on R. Here f (0) = −3 and f (2) = 7. Thus,
f (0) < 0 < f (2); that is, 0 is between f (0) and f (2). So, by Intermediate Value Theorem there is a
number c between 0 and 2 such that f (c) = 0. �

� Example 3.51 Let f (x) = x3− x. Find the solution of f on [−2,2].
Solution: Here, f (−2) = −6 and f (2) = 6, because of this f (−2) < 0 < f (2). By intermediate value
theorem, there exist c in [−2,2] such that f (c) = 0. So, c is the solution of f .

f (c) = c3− c = 0 ⇔ c(c2−1) = 0
⇔ c(c−1)(c+1) = 0
⇔ c = 0,c = 1 or c =−1

Thus, −1, 0 and 1 are the solution of f (x) = x3− x. �

� Example 3.52 If f (x) = x2− x2 + x, show that there is a number c such that f (c) = 10.
Solution: The function f (x) is continuous every where, so we can use the intermediate value theorem. Let
take the interval [0,3]∈R, then at x= 0, f (0) = (0)3−(0)2+0= 0 and x= 3, f (3) = (3)3−(3)2+3= 21.
Since 0 ≤ f (c) ≤ 21⇒ 0 ≤ 10 ≤ 21, by Intermediate value theorem, there exist 0 ≤ c ≤ 21, such that
f (c) = 10. �

Theorem 3.5.9 Every continuous function in a closed interval [a,b] attains its maximum and minimum
value.
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3.6 Exercise 23

3.6 Exercise
1. For the function g whose graph is given, state the value of each quantity, if it exist. If it does nor

exist, explain why.

(a) lim
x→0−

g(x) (b) lim
x→0+

g(x) (c) lim
x→0

g(x)

(d) lim
x→2−

g(x) (e) lim
x→2+

g(x) ( f ) lim
x→2

g(x)

(g)g(2) (h) lim
x→4

g(x)

Figure 3.14: graphs of g(x)

Ans. −1,−2,does not exist,2,0,does not exist,1,3

2. Evaluate the infinite limit lim
x→5+

6
x−5 .

Ans. ∞

3. Evaluate the infinite limit lim
x→5+

x−1
x2(x+2) .

Ans. −∞

4. Given that lim
x→2

f (x) = 4, lim
x→2

g(x) =−2, lim
x→2

h(x) = 0

Find the limits that exist. If the limits does not exist, explain why.

(a) lim
x→2

[ f (x)+g(x)] (b) lim
x→2

[g(x)]3 (c) lim
x→2

√
f (x)

(d) lim
x→2

3 f (x)
g(x)

(e) lim
x→2+

g(x)
h(x)

( f ) lim
x→2

g(x)h(x)
h(x)

Ans. −6,−8,2,−6,does not exist,0

5. Evaluate the limit lim
x→1

( 1+3x
1+4x2+3x4 )

1
3 .

Ans. 1
8

6. Evaluate the limit lim
x→1

( 1+3x
1+4x2+3x4 )

1
3 .

Ans. 1
8

7. Evaluate the limit lim
x→2

x2+x−6
x−2 .

Ans. 5

8. Evaluate the limit lim
x→−4

(
1
4+

1
x

4+x ).
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24 Limit and Continuity

Ans. − 1
16

9. Let f (x) = x2−1
|x−1| .

(a) Find lim
x→1+

f (x) and lim
x→1−

f (x).

(b) Does lim
x→1

f (x) exist?

Ans. 2, −2, No; does not exist

10. If lim
x→1

f (x)−8
x−1 = 10, find lim

x→1
f (x).

Ans. 8

11. For the limit lim
x→1

(4+ x−3x3) = 2 illustrate the definition limit by finding values of δ that corre-

sponding to ε = 1 and ε = 0.1.

Ans. 0.11 and 0.012(or smaller positive numbers)

12. Prove that lim
x→2

(x2−4x+5) = 1 by using ε−−δ definition of limit.

13. Show that f (x) = (x+2x3)4 is continuous at a =−1.
14. Show that f (x) = 2

√
3− x is continuous on the interval (2,∞).

15. Explain why the function f (x) = x4+17
6x2+x−1 is continuous at every number in its domain. State the

domain.

Ans. {x|x 6=− 1
2 ,

1
3}

16. Show that f (x) is containing on (−∞,∞), where f (x) =
{

x2 if x < 1√
x if x≥ 1

17. Show that f (x) is containing on (−∞,∞), where f (x) =
{

sinx if x < π

4
cosx if x≥ π

4
18. Show that the function

f (x) =
{

x4 sin( 1
4 ) if x 6= 0

0 if x = 0

is continuous on (−∞,∞).
19. Use the intermediate value theorem to show that there is a root of the equation x4 + x−3 = 0 in the

interval (1,2).
20. Use the intermediate value theorem to show that there is a root of the equation 3

√
x = 1− x in the

interval (0,1).
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